Impacts of Deer and Invasive Plant Species on Central New Jersey Forests: *Strategies for Restoration*

Raritan Headwaters Association March 29, 2018

Jay F. Kelly, Ph.D.
Raritan Valley Community College

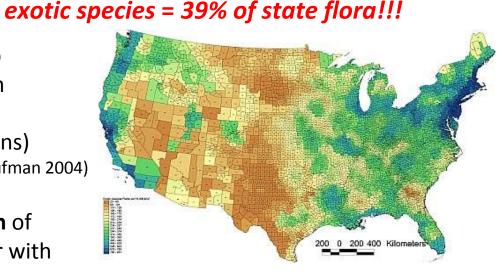
Exotic Invasive Plant Species

2,200 native (indigenous) plant species in New Jersey...

4000 exotic species introduced to NJ

- 1,400 escaped into the wild
- 400 have become invasive

Ecological Impacts:


Compete with native species; Threat to endangered species; Disrupt ecosystem processes (nutrient cycling, pollination/dispersal, trophic interactions)

(Snyder and Kaufman 2004)

Economic Impacts:

Invasive species cause over **\$100 billion** of damage in the United States every year with **\$290 million** being in NJ alone!

(New Jersey Invasive Species Council 2009)

Density of Exotic Species - #/10,000 km²


(BONAP 2011)

Deer Population Trends in the Northeastern US

Reasons for Deer Population Growth

Infographic by Peter Smallidge, Berndt Blossey Cornell University

- 1. Extermination of Predators
- 2. Cessation of Commercial Hunting
- 3. Warming Winters
- 4. Suburban Development

Deer Population Benchmarks

>10 deer/mi² Impact preferred browse species

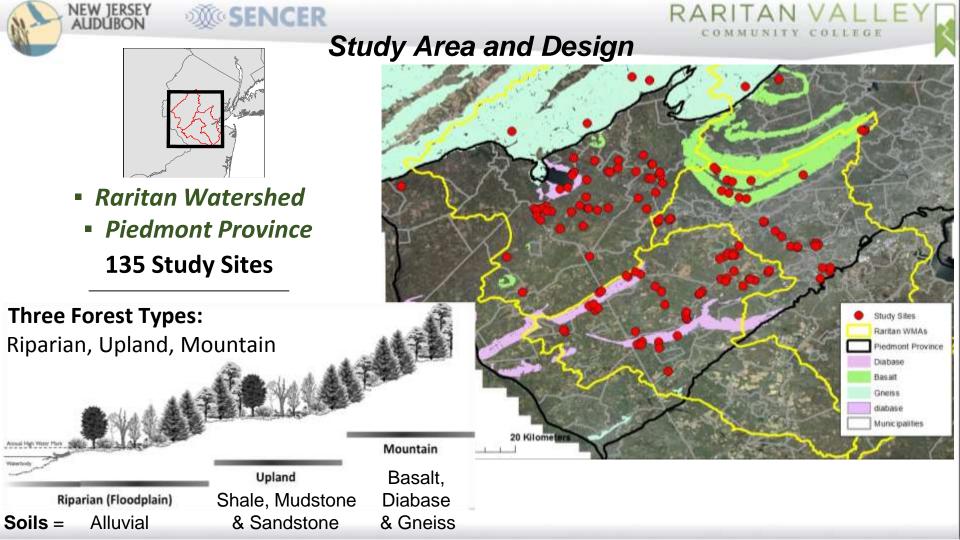
>20 deer/mi² Prevent forest regeneration

>100 deer/mi² Without deer management

(Drake et al. 2002, Almendinger pers. Comm.)

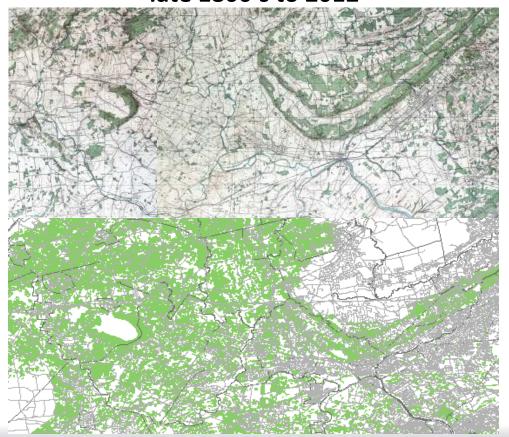
Historic: 8-11 deer/mi²

Healthy forest with dense understory vegetation and native plant species.

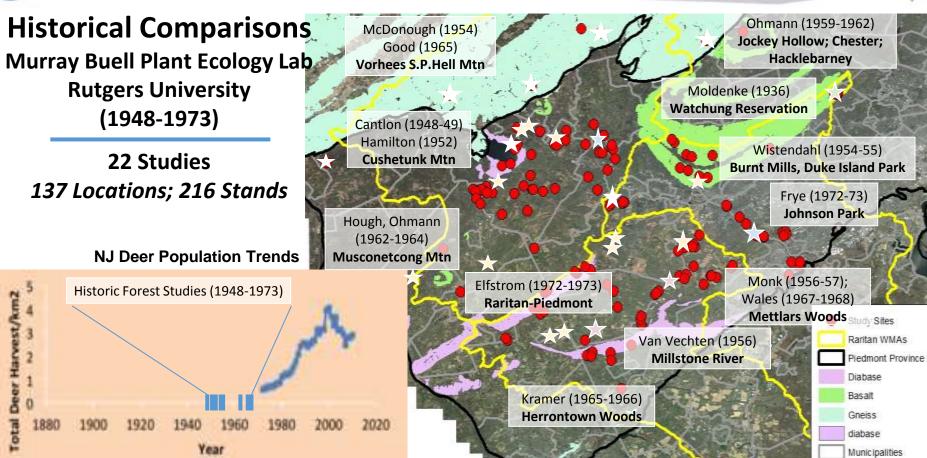

Current: 13-76 deer/mi²

Overbrowsed forest at Hutcheson Memorial Forest in Franklin Township (2012)

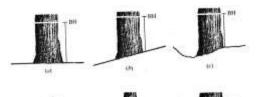
Overbrowsed forest with invasive barberry shrubs at Peter's Tract in Bernardsville (2016)


Forest Age

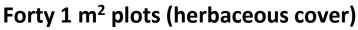
"Old" and "Young" (before or after 1930)



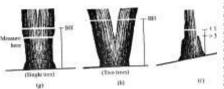
Forest Development in Central NJ – late 1800's to 2012



20 Kilometers



Forest Study Methodology

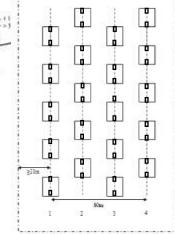

Four 100 m Transects (20 m apart)

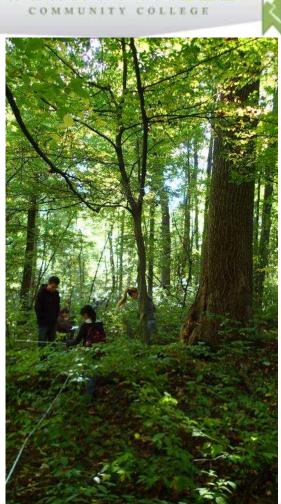
Twenty 100 m² plots (~0.5 acres)

Minimum 30 m from edge

Size Class Categories

Seedlings: <1' height <1" diameter


Saplings: >1' height


<1" diameter

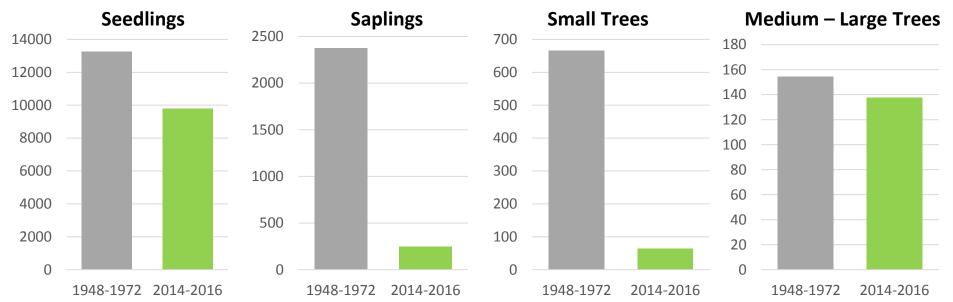
Small trees: 1 - 3.9" dbh

Med-Lg. trees: > 4" dbh

2014-2017 Vegetation Studies: Forest Ecology Interns

Counted / Measured:

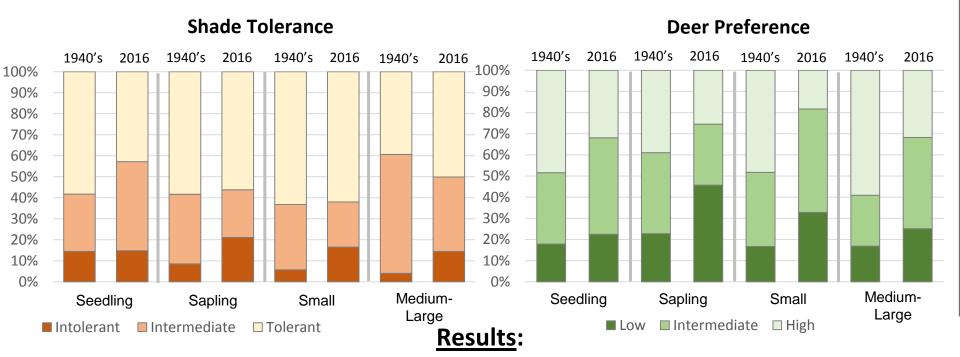
>50,000 trees >550,000 seedlings >4,000 herb plots >22 km shrub/liana data



Comparison of Past and Present Forest Size Class Structure

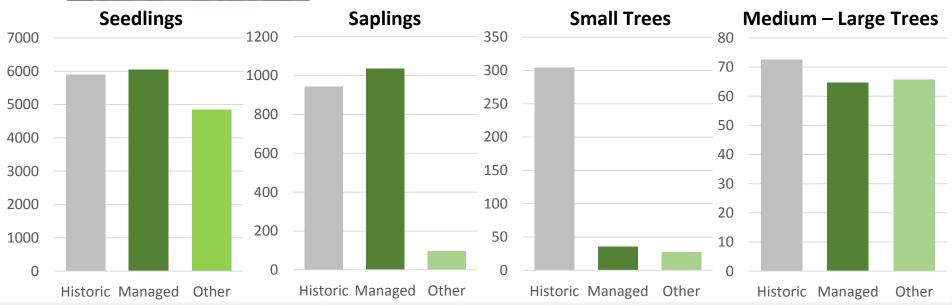
% Change from Past (1948-73) to Present (2014-17)

Seedlings	Saplings	Small	Medium - Large
-26%	-90%	-90%	-11%



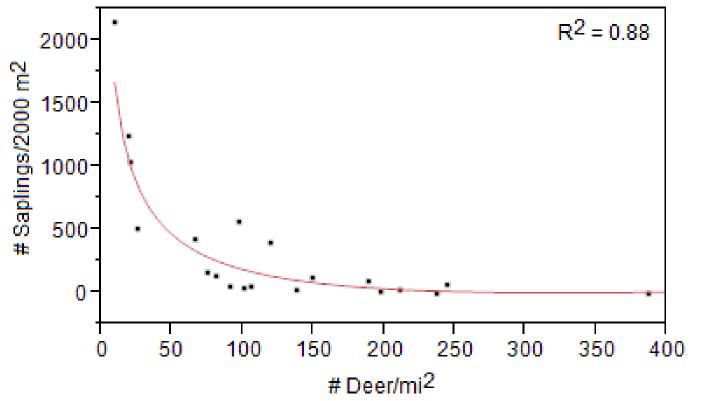
Why the lack of regeneration? Shade vs. Deer % Composition of Forest Size Classes

Increases in *Shade Intolerant* species (i.e., more light than in past)
Increases in *Deer Resistant* species (i.e., more deer pressure than in past)

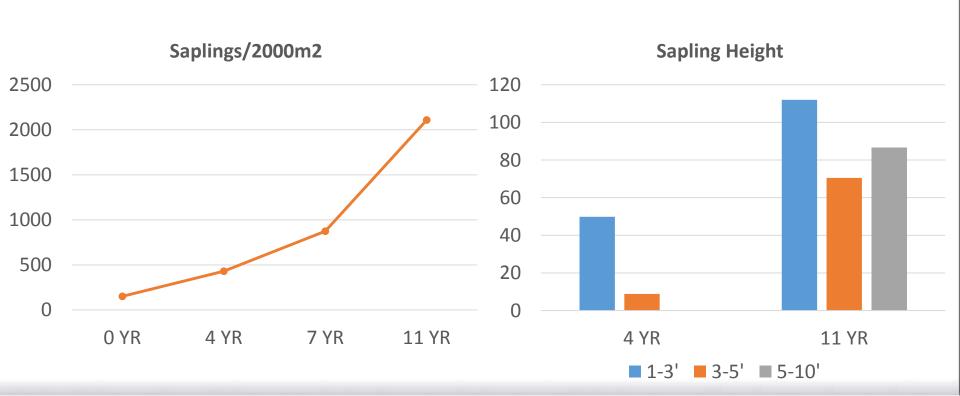


Effects of Deer – Experimental Evidence

- 9 Additional Study Sites in Deer Exclosures
 (Duke Farms, Great Swamp, Greenbrook Reservation)
- 10 Additional Sites with Intensive Hunting
 (Princeton Twp, Duke Farms)

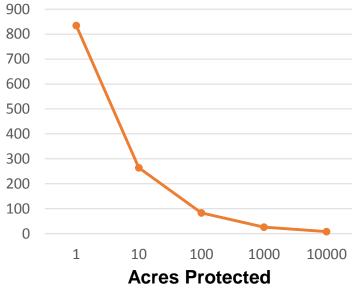


Relationship of # Saplings to Deer Densities



Increasing Number and Size of Saplings in Deer Exclosures Over Time

Possible Solutions for Forest Restoration: Deer Fencing


Costs Depend on Materials Selected:

Plastic =
$$$1-2/ft$$
. Metal (Fixed Knot) = $$3-5/ft$.

Efficiency Increases With Size

(assuming square-shaped preserve)

Prices obtained from Deer Busters (<u>www.deerbusters.com</u>)

Possible Solutions for Forest Restoration: Deer Fencing

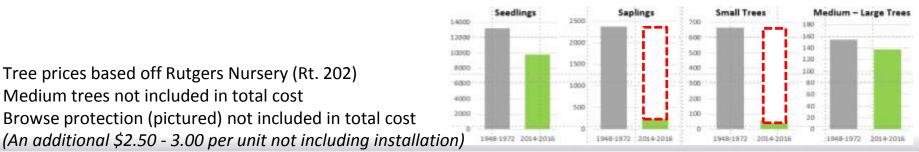
Approximate Cost for Fencing 76 Acres of Forest on RVCC Campus:

Welded Wire & Posts: **\$144,100**

or Plastic Fencing & Trees: \$28,500

Material	Quantity	Cost (Per Item)	Total Cost	
Wooden Posts (8') 2,827		\$7.50	\$21,203	
Wire Fencing	28,269 ft.	\$4.00 - 4.50/ft.	\$120,143	
or Plastic Fencing		\$0.91/ft.	\$25,699	
Gate	1	\$250.00	\$250.00	
		TOTAL: \$28,449 - \$144,096		

Estimate done by BASH Contracting, in conjunction with NJ Ecological Solutions. Gate: Brenner's Gardens, Pressure treated wood: Lowes


Possible Solutions for Forest Restoration: Re-Planting

Approximate Cost for Replanting 76 Acres of RVCC Forest: \$567,996

Replanting Understory Trees on a 76 Acre Plot					
Plantings	Approximate Average Cost Quantity (Per Tree) 1,2		Total Cost ³		
Saplings	232,408	\$2.29	\$532,214		
Small Trees	8,968	\$3.99	\$35,782		
	\$567,996				

³Browse protection (pictured) not included in total cost

¹Tree prices based off Rutgers Nursery (Rt. 202)

² Medium trees not included in total cost

Possible Solutions for Forest Restoration: Hunting Programs

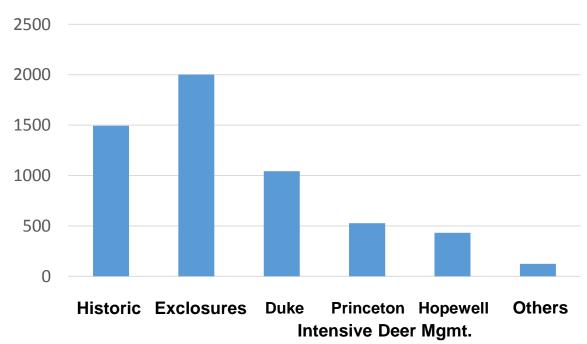
<u>Recreational Hunting (Private Clubs/Permit)</u> – Readington, Raritan, County Pks *Revenue-positive/low cost but less effective*

<u>Sharpshooters/Community-Based Deer Management</u> – Princeton, Bernards, Millburn, Duke Farms, others

High-cost (\$208-292/deer) but very effective

<u>Ecological Deer Management</u> – Duke Farms, HLT, FoHVOS, some County Pks *Low cost and very effective*

Non-lethal Methods (Contraceptives) — Princeton, Rutgers, Jockey Hollow High-cost (\$430-1,100/deer) and ineffective/experimental



Effects of Different Methods of Deer Management on Sapling Numbers

Saplings/2000m²

Public Safety - Vehicle Damage from Deer Collisions

>1,000,000 DVCs/yr in U.S.; >200 deaths

(Conover et al. 1995, Luedke 2011)

26,860 deer collisions in NJ in 2013

#1 - Monmouth County

#2 – Morris County

#3 - Somerset County

#4 - Hunterdon County

#5 - Middlesex County

(State Farm Insurance, NJ.com 2014, NJTPA 2015)

New Jersey spends > \$111 million/yr. in insurance claims related to deer collisions.

- \$10-13 million/county in central NJ

(NJ.com 2015)

Other Benefits of Intensive Deer Management - Public Safety

Case studies of Organized Hunting in NJ (deNicola et al. 2008)

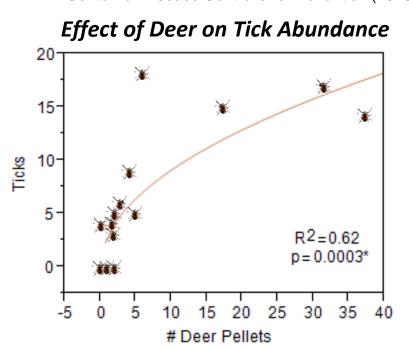
Duke Farms – reduced deer from 80-350/mi² to 12/mi²

Princeton – reduced deer from 43/mi² to 17/mi²

Bernards – reduced feer from 34/mi² to 18/mi²

Proportionate Reduction in Deer Collisions e.g., 60% Reduction in Princeton

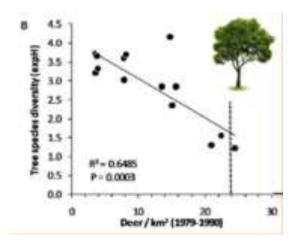
Bernards Twp - Road kill numbers reduced from 289 in 2001 to 49 in 2016 (-83%)



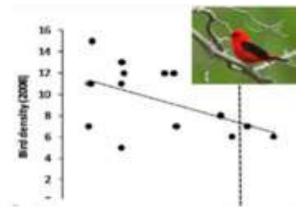
Public Health - Lyme Disease

330-640 cases/yr in Morris County since 2000 207-528 cases/yr in Hunterdon County

Center for Disease Control and Prevention (2016)






Effects of Deer on the Food Web

90% of insects are specialists and feed on one or few species of plants

96% of terrestrial bird species rely on insects, spiders, and other arthropods as a food source

Infographic by Peter Smallidge, Berndt Blossey

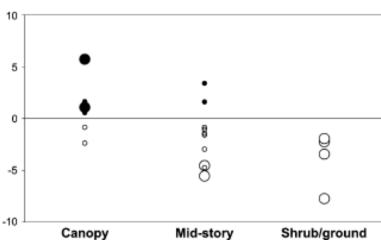


Fig. 1 Time series of photos from Hutcheson Memorial Forest (HMF) in Somerset County, New Jersey. HMF is mixed oakhickory forest with 26 ha of old growth surrounded by secondary forest, old fields, and farm fields. (a) Shows the forest in 1976 with an intact shrub layer. Overbrowsing by deer and non-native plant invasion have changed the forest understory and midcanopy from native saplings, shrubs and Fig. 3 Plotted abundance trend estimates from 1980 to 2005

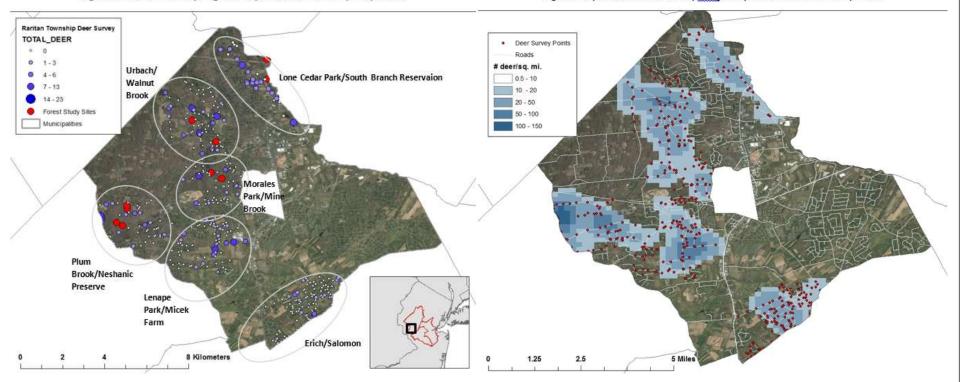
rig. 3 Plotted abundance trend estimates from 1980 to 2005 for 21 forest breeding bird species in New Jersey. Estimates are classified based on dominant vertical nesting location (canopy, midcanopy, or shrub/ground). Solid circles indicate species that show a positive trend in annual abundance change, whereas open circles represent species experiencing a negative trend. The zero line represents no change in abundance through time. Large circles indicate that the trend is statistically significant, whereas small circles indicate nonsignificance. On the y-axis labels can be translated as a percentage. For example, a species sitting at the -5.0 level can be said to declining in abundance by an estimated 5% per year

herbs such as Viburnum acerifolium, Circaea lutetiana, and Podophyllum peltatum (Davison 1981) to, (b) a dense understory composed mostly of Microstegium vimineum and another exotic invasive, Alliaria petiolata (foreground) (2005) and (c) leaf litter with small patches of Microstegium vimineum (2005). Photograph (a) is courtesy of Jim Quinn and (b) and (c) are courtesy of Myla Aronson

Baiser et al (2008)

Public Education and Outreach

Importance of public outreach and evidence-based decision-making Collect data on deer, forest regeneration, invasives & monitor effectiveness of management



Monitoring – Evidence Based Decision-making

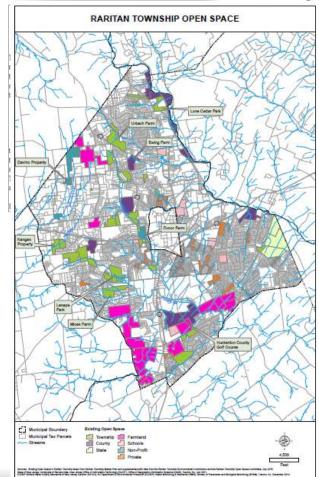
Figure 1. Results of Deer Spotlight Surveys in Raritan Township in April 2017

Figure 2. Map of Localized Deer Density Along Survey Routes in Raritan Township in 2017

Aerial vs. Ground Survey Results

<u>Aerial</u> – 21.8/mi² (Vision Air Research) February 2017

Ground – 22.6/mi² (RVCC) April 2017



Hunting Options for Deer Management: *Hunting Programs on Preserves/Town Lands*

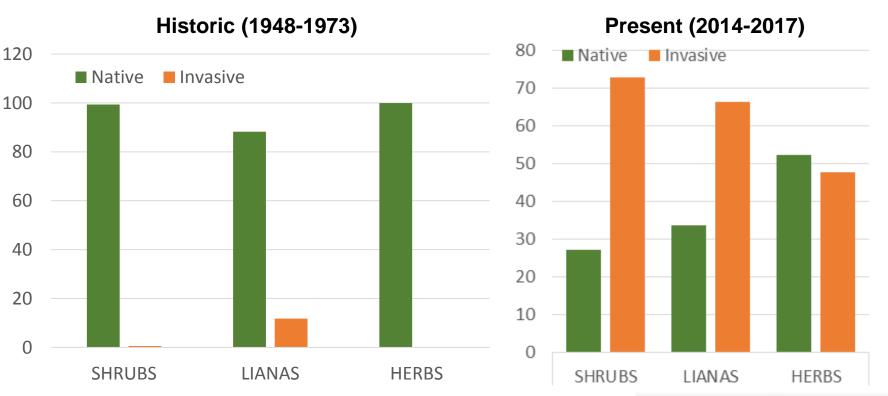
Recommended hunting policies

- Hunter Safety Training and Education
- Increased Take3 to 1 "earn a buck"
- Hunting Targets (0.15-0.25 deer/acre)
- Harvest Reports
- Monitoring & Enforcement
- Incentives
- Subsidies
- Stewardship
- Monitoring Deer Population
- Community Based Deer Management (NJDEP)

Hunters Helping the Hungry

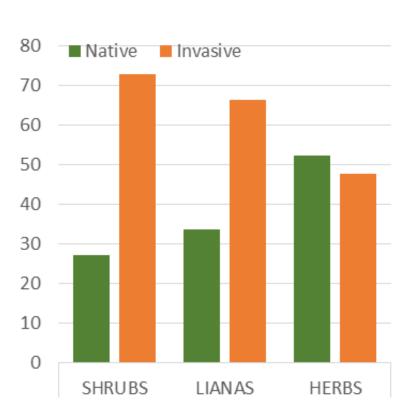
Since the program's inception [1997], hunters have donated over 430,000 pounds of venison to the *HHH* providing approximately 1.7 million meals to those in need (Les Giese 2017)

Donation Policy


- Deer <50 lbs costs \$30/deer to process
- Deer <50 lbs costs \$10/deer to process
- In Pennsylvania, cost is \$0

Invasive Plant Species in Forest Understories - Past to Present

- **♦** Dramatic Increase in Invasive Understory Vegetation from Historic to Present
- Present Forest Understories are More Invasive Than Native



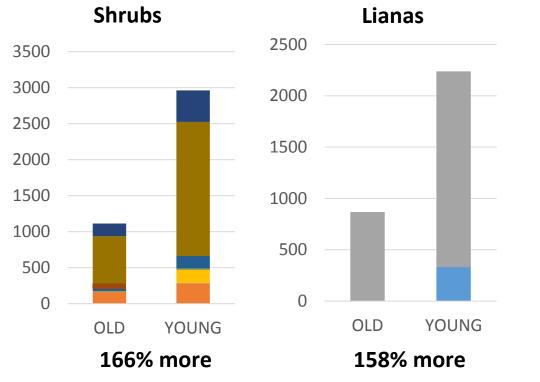
Invasive Plant Species in Forest Understories – Dominant Species

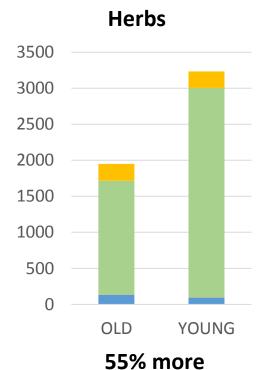
♦ More invasive than native on average

Japanese Stiltgrass – 87%

Multiflora Rose - 62%

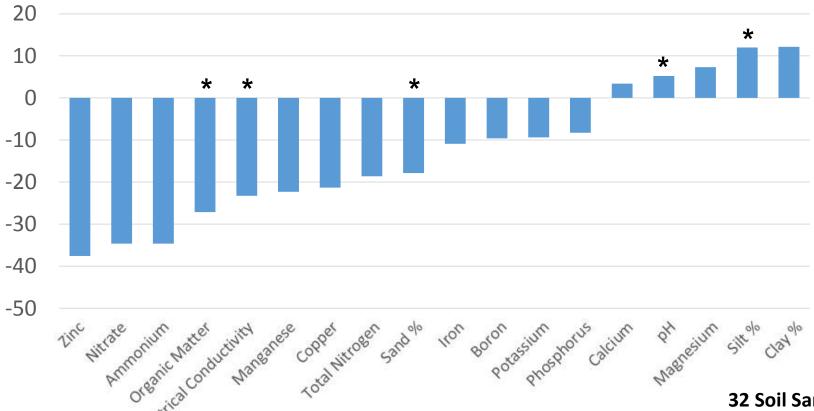
Japanese Honeysuckle 89%

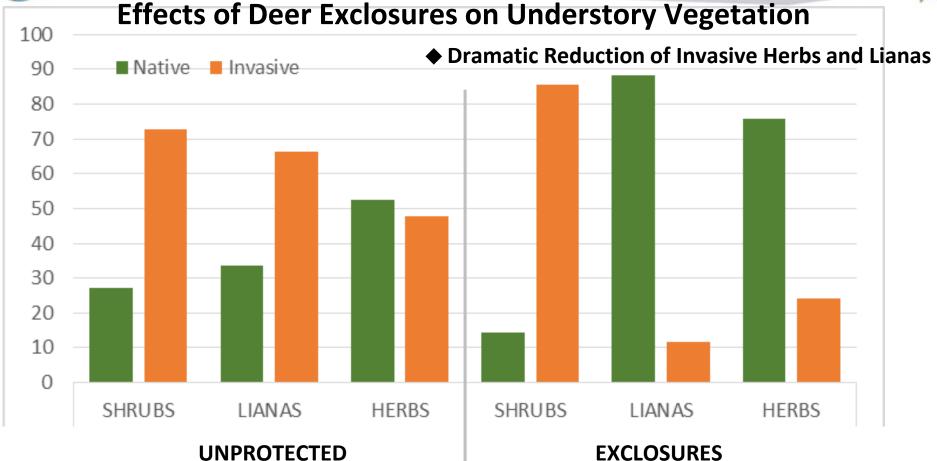




Invasive Plant Species in Forest Understories – Young vs. Old Forests

♦ More Invasives in Young Forests Than Old




% Difference of Soil Variables (Young vs. Old Forests)

32 Soil Samples Rutgers Soil Testing Laboratory

Restoration Priorities – Old Forests!

Conservation Blueprint (<u>www.njmap2.com</u>) 1930's Aerials

Bing Maps 1899 Forest Map

Exotic vs. Native Species – Food Web Effects

Zelkova

Zelkova

Ulmus Elm

Supports **0** different species of moths and butterflies.

Supports **206** different species of moths and butterflies.

Sorbaria

False Spiraea

species of moths and butterflies.

Spiraea

Meadowsweet

Supports **2** different Supports **86** different species of moths and butterflies.

(Tallamy n.d.)

Invasive Plant Species Effects on Food Web

HOSTING CAPACITY OF ALIEN PLANTS INTRODUCED TO NORTH AMERICA					
Plant Species	Herbivores Supported in Homeland	Herbivores Supported in North America	Years Since Introduction to North America	Reference	
Clematis vitalba	40 species	1 species	100	Macfarlane & van den Ende 1995	
Eucalyptus stellulata	48 species	1 species	100	Morrow & La Marche 1978	
Melaleuca quinquenervia	409 species	8 species	120	Costello et al. 1995	
Opuntia ficus- indica	16 species	0 species	250	Annecke & Moran 1978	
Phragmites australis	170 species	5 species	300+	Tewksbury et al. 2002	

(Tallamy 2009)

An Ounce of Prevention

Planting Natives Instead of Exotic Invasives

https://bhwp.org/grow/native-plant-nursery/

http://wildridgeplants.com/ http://www.toadshade.com/

https://www.nycgovparks.org/greening/greenbelt-native-plant-center

Acknowledgements

- Funding was provided by: National Science Foundation SENCER-ISE Program; RVCC Foundation; Private Donations from RVCC and Local Community; RVCC Environmental Club
- Project Partners: NJ Audubon Dr. Nellie, Tsipoura, Kelly Wenzel, Mike Allen, Dale Rosselet; Citizen Scientists;
- RVCC Student Interns Rebekah Buczynski, Lee Minicuci, Jason Hafstad, Cory Snyder, Dylan Hardy, Jessica Ray, Adam Kohler, Ali Severino, Dani Yashinovitz, Bri Primiani, Zachary Sparta, Kristen Greaney, Alvin Chin, Willie Grosch, Eric Williams, Bonnie Semmling
- Public Partners: Duke Farms; Great Swamp Watershed Association; Somerset,
 Hunterdon and Middlesex County Parks Systems; NJDEP; Readington Twp Open
 Space Advisory Board; Rutgers University; Raritan Township; Greenbrook Sanctuary

References

Conover, M. R., W. C. Pitt, K. K. Kessler, T. J. DuBow, and W. A. Sanborn. 1995. Review of human injuries, illnesses, and economic losses caused by wildlife in the United States. Wildlife Society Bulletin 23: 407–414.

Drake, D., M. Lock and J. Kelly. 2002. Managing New Jersey's Deer Population. Rutgers Agricultural Experiment Station, Rutgers University Press.

Hasse, J. and R. Lathrop. 2010. Changing Landscapes in the Garden State: Urban Growth and Open Space Loss in NJ 1986 thru 2007. Executive Summary. Rowan University Geospatial Research Lab, Department of Geography, and Center for Remote Sensing and Spatial Analysis, Rutgers University.

Kartesz, J.T., The Biota of North America Program (BONAP). 2011. *North American Plant Atlas* (http://www.bonap.org/MapSwitchboard.html). Chapel Hill, N.C.

Maslo, B. and S. Wehman. 2013. An overview of white-tailed deer status and management in New Jersey. Cooperative Extension Fact Sheet FS1202. Rutgers, The State University of New Jersey, New Brunswick, NJ.

Rittenhouse, C.D., A.M. Pidgeon, T.P. Albright, P.D. Culbert, M.K. Clayton, et al. 2010. Conservation of forest birds: Evidence of a shifting baseline in community structure. PLoS ONE 5(8): e11938. doi:10.1371/journal.pone.0011938

Snyder, D. and S. R. Kaufman. 2004. An overview of nonindigenous plant species in New Jersey. New Jersey Department of Environmental Protection, Division of Parks and Forestry, Office of Natural Lands Management, Natural Heritage Program, Trenton, NJ.

Summers, C. 2010. Designing Gardens with Flora of the American East. Rutgers University Press.

Tallamy, Doug. Professor and Chair of the Department of Entomology and Wildlife Ecology at the University of Delaware in Newark, Delaware. Deer Management Handout